
© 2016 IBM Corporation

Curiouser and curiouser
A selection of malware obfuscation techniques

Cindy Eisner
Senior Technical Staff Member
IBM Research - Haifa
December 2016

Obfuscate

render obscure, unclear, or unintelligible

Why obfuscate?

� To make code hard to reverse engineer

Stuff that malware does

�Taking advantage of vulnerabilities to infect

�Unpacking

�Anti-debugging, anti-research

�Obfuscation

�Malicious payload

About the examples

�Always, we have machine code

�However, to clarify, I’ve lifted some of them to c
–And simplified considerably

Example program

if (beingAnalyzed())

fatal_error("this program is being analyzed");

else

malicious();

Shift right

x = beingAnalyzed();

wasteTime(); /* but make it look like work */

if (x != 0)

fatal_error("this program is being analyzed");

else

malicious();

“Look Ma, no hands!”

hdc = GetDC(makeAnInvisibleWindow());

SetBkColor(hdc,beingAnalyzed());

wasteTime(); /* but make it look like work */

if (SetBkColor(hdc, RGB(6,7,8)) != 0)

fatal_error("this program is being analyzed");

else

malicious();

And why make it easy?

hdc = GetDC(makeAnInvisibleWindow());

SetBkColor(hdc,beingAnalyzed());

wasteTime(); /* but make it look like work */

if (SetBkColor(hdc, RGB(6,7,8)) != 0)

while(1) {wasteTime();}

else

malicious();

e: inc eax

jmp e

f: more code…

a: inc eax

jmp b

b: more code…
c: inc eax

jmp d

d: more code…

Infinite loops

a: inc eax

jmp a

b: more code…

Thread 1: Thread 9:

Overwrite single

byte ‘a’ with ‘b’

Thread 17:

Overwrite single

byte ‘c’ with ‘d’

etc. etc.

c: inc eax

jmp c

d: more code…

A way to waste time (but looks like work)

�for (i=0; i<100000000; i++)

{y = copyit(x); z = copyit(y); x = copyit(z);}

int copyit(int i) {

static int j=0, k=0;

if (j>0) {j = i – 45; k = j + 10;}

else if (k%7) {j = i – 100; k = j + 65;}

else {j = i * 3; k = (j/3) – 35;}

return (k + 35);

}

Another way to waste time

�Spawn lots of threads

�Pass events back and forth

Camouflaging API calls

�So, call 7dd7124b directly

(anonymous function)

7dd71245 mov edi, edi
7dd71247 push ebp
7dd71248 mov ebp, esp
7dd7124a pop ebp
7dd7124b jmp short GetModuleHandleA_0

Kernel32.GetModuleHandleA

Flouting coding conventions

push eax

ret

push eax (=a)
push ebx (=b)
push ecx (=c)
ret
…

c: ret
…

b: ret
…

a: …

push eax
jmp <somesystemcall>

cmp eax, ecx
je a
jmp b
…

b: jge a
jmp c
…

c: jmp a

call p
.
.
.
p: pop eax

Not in my backyard

CreateProcess
("c:\\Program Files (x86)\\Mozilla Firefox\\firefox.exe",

NULL,NULL,NULL,FALSE,0,NULL,NULL,&sinfo,&pinfo);

BYTE *startaddress = (BYTE *)

VirtualAllocEx
(pinfo.hProcess, 0, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);

WriteProcessMemory
(pinfo.hProcess, startaddress, &localbuf, size, &byteswritten);

CreateRemoteThread
(pinfo.hProcess, 0, 0, (LPTHREAD_START_ROUTINE)startaddress, 0, 0, 0);

Where’s Wally?

ret = NtQuerySystemInformation(x, y, z, w);

typedef int (WINAPI*ftype)(PVOID a, PVOID b, PVOID c, PVOID d);

HINSTANCE lib = LoadLibrary(TEXT("ntdll.dll"));

ftype fp = (ftype) GetProcAddress(lib, "NtQuerySystemInformation");

ret = (fp) (x, y, z, w);

Does anybody see the malicious code?

try {

string s1 = "1.052033", s2 = "e+00", s3 = "3";

for (int i = 0; i<1000; i++) {

for (int j = 0; j<1000;j++) {

long double f = stof(s1+s2+s3); s1 += s3;

}

int t = stoi(s3); t *= 2; s3 = to_string(t);

}

}

catch (...) { f(); }

0x1d3027e pushad

0x1d3027f pushad

0x1d30280 movzx esi, bx

0x1d30283 pushfd

0x1d30284 jmp 1d3029bh

0x1d3029b add ax, 0a76eh

0x1d302a0 jmp 1d302b9h

0x1d302b9 popfd

0x1d302ba popad

0x1d302bb pushfd

0x1d302bc jmp 1d302cch

0x1d302cc sub si, 0bae8h

0x1d302d1 jmp 1d302dch

0x1d302dc popfd

0x1d302dd popad

0x1d302de pop ebp

0x1d302df pushad

0x1d302e0 pushfd

0x1d302e1 jmp 1d302f5h

0x1d302f5 and si, 0cd48h

0x1d302fa jmp 1d30305h

0x1d30305 popfd

0x1d30306 mov esi, 023baccbfh

0x1d3030b popad

0x1d3030c retN 030h

Wasting time and camouflaging ops

Extra code is generated at runtime,

and randomly

0xb8ddfe pop edx

0xb8ddff pop eax

0xb8de00 popad

0xb8de01 push edx

0xb8de02 push eax

0xb8de03 push edx

0xb8de04 rdtsc

0xb8de06 pop edx

0xb8de07 pop eax

0xb8de08 pop edx

0xb8de09 popad

0xb8ddf1 push eax

0xb8ddf2 pushad

0xb8ddf3 pushad

0xb8ddf4 push eax

0xb8ddf5 push edx

0xb8ddf6 rdtsc

0xb8ddf8 pop edx

0xb8ddf9 pop eax

0xb8ddfa push eax

0xb8ddfb push edx

0xb8ddfc rdtsc

Time stamp confusion

Th
ankYoU

Backup slides

Packing

Packing/unpacking

�Pack
–To compress an executable file

�Unpack
–To run a second executable that:

• Decompresses the compressed file
• Runs it

Packing is not always malicious

�Reduce needed storage or download time

�Protect intellectual property through

obfuscation
–Because packed code is harder to reverse engineer
–Especially if combined with encryption

But often it is malicious

�Protect intellectual property through

obfuscation
–Because packed code is harder to reverse engineer
–Especially if combined with encryption

�Render signatures useless
–Because once my malware is identified, all I have to
do is repack

And not always easy to understand

Example (based on Shylock/Caphaw)

� Take a piece of malware (call it A), encrypt it (giving B)

� Then, write a program (C) that generates the encrypted code

� Encrypt C, write it into your data section

� Write a program (D) that:
– Allocates space in memory

– Decrypts its data section there (this will give you C)

– Allocates more space in memory, in which it writes code (E) that:
• Erases (D)

• Runs C to generate B (overwriting the zeroed-out D)

• Allocates more memory

• Decrypts B into the newly alloced memory (this will give you A)

• Runs the result (A – the original malicious code)

– Runs E

Anti-debuggingAnti-debuggingAnti-debugging

Anti-debugging, anti-research

�Straightforward packed code is fairly easy to unpack
–Just watch what it does, e.g., in a debugger or in an emulator
–Watch carefully! (i.e., in a VM)

�Anti-debugging techniques are intended to make
unpacking more difficult

–Exploit subtle differences between environments
• Under debugger vs. independent run
• In virtual vs. real machine

–Or just make it confusing, e.g.
• Lots of jumps
• Lots of threads

Exceptions

�Register an exception handler, then generate an

exception on purpose
–Debuggers are given first chance to handle exception
–So behavior is different under debugger vs. without debugger

(there are workarounds – the point is just to make it hard for the
reverser)

�Exception handler has access to all registers, including
EIP

–So has full control over where it returns and in what state
–Lets you do funky stuff

Funky things you can do with exceptions

� Suppose EIP points here: XX YY ZZ TT UU VV WW …..

� And suppose operation beginning with XX consumes 3 bytes total, like this:

� Furthermore, assume operation has been written to generate an exception

� In the exception handler, increment EIP, so now the operation is this:

� Or you can just overwrite the opcode

op

YY

next ops

WW …..

data

ZZ TT UU VV

op

XX

data

YY ZZ

next ops

TT UU VV WW ….. TT UU VV WW …..

op

XX

data

YY ZZ

next ops

TT UU VV WW ….. TT UU VV WW …..

op

QQ

data

YY ZZ

next ops

TT UU VV WW ….. TT UU VV WW …..

Funky things, continued

�Change the value of any general purpose register

�Or any flag

�Makes it hard to read the code, hard to debug, and hard
for static disassemblers

�You can of course nest exceptions…

Checking for debugger, VM

� IsDebuggerPresent(), or access bit accessed by IsDebuggerPresent()

(bit 3 of structure pointed to by FS:[30h] (Thread Information Block))

� NtQueryInformationProcess(), with certain parameters reveals debug

port

� Check for presence of various files, windows, registry keys, e.g.
– File “\\.\SICE”: indicates SoftICE kernel debugger

– Window of class “ollydbg” indicates OllyDbg binary debugger

– Registry key named “Software\Wine” indicates Wine (un)emulator

� Check for environment variables, e.g.
– Presence of WLNumDLLsProt indicates to malware it is being watched

� Opcode 0f 00 (SLDT) returns 0 on Windows, non-zero on VMWARE

� Calculate md5 of code, compare to expected (finds software breakpoints)

� There are MANY other ways

Timing

�There are various ways to check the time

�Can be used to distinguish run under debugger or VM
from independent run

�Phantom checks the time frequently, but then discards
result

–Seems to be a way to confuse the human, who might waste time
faking time

